Una computadora (del latín computare -calcular-), también denominada ordenador o computador, es una máquina electrónica que recibe y procesa datos para convertirlos en información útil. Una computadora es una colección de circuitos integrados y otros componentes relacionados que puede ejecutar con exactitud, sorprendente rapidez, y de acuerdo a lo indicado por un usuario o automáticamente por otro programa, una múltiple variedad de secuencias o rutinas de instrucciones que son ordenadas, organizadas y sistematizadas en función a una amplia gama de aplicaciones prácticas y precisamente determinadas, proceso al cual se le ha denominado con el nombre de programación y al que lo realiza se le llama programador. La computadora, además de la rutina o programa informático, necesita de datos específicos (a estos datos, en conjunto, se les conoce como "Input" en inglés) que deben ser suministrados, y que son requeridos al momento de la ejecución, para proporcionar el producto final del procesamiento de datos, que recibe el nombre de "output". La información puede ser entonces utilizada, reinterpretada, copiada, transferida, o retransmitida a otra(s) persona(s), computadora(s) o componente(s) electrónico(s) local o remotamente usando diferentes sistemas de telecomunicación, pudiendo ser grabada, salvada o almacenada en algún tipo de dispositivo o unidad de almacenamiento
La característica principal que la distingue de otros dispositivos similares, como una calculadora no programable, es que puede realizar tareas muy diversas cargando distintos programas en la memoria para que el microprocesador los ejecute.
Tipos de computadores
Computador analógico
Supercomputadora
Computadora central
Minicomputadora
Microcomputadora
Computadora de escritorio
Computador personal
Computadora doméstica
Multiseat
Computadora portátil de escritorio
Computadora portátil
Tablet PC
Subportátil
PC Ultra Móvil
PDA
Smartphone
Cliente ligero
Sistema empotrado
Algoritmo
En matemáticas, ciencias de la computación, y disciplinas relacionadas, un algoritmo (del latín, dixit algorithmus y éste a su vez del matemático persa al-Jwarizmi) es una lista bien definida, ordenada y finita de operaciones que permite hallar la solución a un problema. Dado un estado inicial y una entrada, a través de pasos sucesivos y bien definidos se llega a un estado final, obteniendo una solución. Los algoritmos son objeto de estudio de la algoritmia, y su definición queda formalizada por el modelo computacional de la Máquina de Turing.
Su importancia radica en mostrar la manera de llevar a cabo procesos y resolver mecánicamente problemas matemáticos o de otro tipo. Al igual que las funciones matemáticas, los algoritmos reciben una entrada y la transforman en una salida, comportándose como una caja negra. Sin embargo, no toda caja negra que convierta una entrada en una salida se puede considerar un algoritmo: para que un algoritmo pueda ser considerado como tal, debe ser una secuencia ordenada, finita y definida (formalización de su comportamiento) de instrucciones. De este modo se puede seguir y predecir el comportamiento del algoritmo para cualquier entrada posible (salvo algoritmos probabilistas, que tiene usualmente una salida distinta), a partir del seguimiento de esa secuencia de instrucciones, que como es ordenada y definida, no da lugar a ambigüedades y puede seguirse su traza.
algoritmos y sus caracteristicas
En computación y matemáticas un algoritmo de ordenamiento es un algoritmo que pone elementos de una lista o un vector en una secuencia dada por una relación de orden, es decir, el resultado de salida ha de ser una permutación —o reordenamiento— de la entrada que satisfaga la relación de orden dada. Las relaciones de orden más usadas son el orden numérico y el orden lexicográfico. Ordenamientos eficientes son importantes para optimizar el uso de otros algoritmos (como los de búsqueda y fusión) que requieren listas ordenadas para una ejecución rápida. También es útil para poner datos en forma canónica y para generar resultados legibles por humanos.
Desde los comienzos de la computación, el problema del ordenamiento ha atraído gran cantidad de investigación, tal vez debido a la complejidad de resolverlo eficientemente a pesar de su planteamiento simple y familiar. Por ejemplo, BubbleSort fue analizado desde 1956. Aunque muchos puedan considerarlo un problema resuelto, nuevos y útiles algoritmos de ordenamiento se siguen inventado hasta el día de hoy (por ejemplo, el ordenamiento de biblioteca se publicó por primera vez en el 2004). Los algoritmos de ordenamiento son comunes en las clases introductorias a la computación, donde la abundancia de algoritmos para el problema proporciona una gentil introducción a la variedad de conceptos núcleo de los algoritmos, como notación de O mayúscula, algoritmos divide y vencerás, estructuras de datos, análisis de los casos peor, mejor, y promedio, y límites inferiores.
No hay comentarios:
Publicar un comentario